Decay Estimates for Fourth Order Wave Equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay Estimates for Fourth Order Wave Equations

may be thought of as a nonlinear beam equation. In this paper we obtain both L-L estimates and space-time integrability estimates on solutions to the linear equation. We also use these estimates to study the local existence and asymptotic behavior of solutions to the nonlinear equation, for nonlinear terms which grow like a certain power of u. The main L-L estimate (Theorem 2.1) states that sol...

متن کامل

Decay Estimates for Variable Coefficient Wave Equations in Exterior Domains

In this article we consider variable coefficient, time dependent wave equations in exterior domains R × (R \ Ω), n ≥ 3. We prove localized energy estimates if Ω is star-shaped, and global in time Strichartz estimates if Ω is strictly convex.

متن کامل

Decay Estimates for Wave Equations with Variable Coefficients

We establish weighted L2−estimates for dissipative wave equations with variable coefficients that exhibit a dissipative term with a space dependent potential. These results yield decay estimates for the energy and the L2−norm of solutions. The proof is based on the multiplier method where multipliers are specially engineered from asymptotic profiles of related parabolic equations.

متن کامل

Decay estimates for a class of wave equations

In this paper we use a unified way studying the decay estimate for a class of dispersive semigroup given by eitφ( √ −∆), where φ : R+ → R is smooth away from the origin. Especially, the decay estimates for the solutions of the Klein-Gordon equation and the beam equation are simplified and slightly improved.

متن کامل

Homoclinic Solutions for Fourth Order Traveling Wave Equations

We consider homoclinic solutions of fourth order equations u ′′′′ + βu ′′ + Vu(u) = 0 in R , where V (u) is either the suspension bridge type V (u) = eu − 1 − u or SwiftHohenberg type V (u) = 1 4 (u2 − 1)2. For the suspension bridge type equation, we prove existence of a homoclinic solution for all β ∈ (0, β∗) where β∗ = 0.7427 · · · . For the Swift-Hohenberg type equation, we prove existence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1998

ISSN: 0022-0396

DOI: 10.1006/jdeq.1997.3369